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Purpose. Indomethacin exhibits conformational polymorphism. Crystal structures of two polymorphs

have been solved bearing different molecular conformations. Herein, the conformational variance in the

crystals was examined by density functional theory (DFT) calculations in order to understand the mutual

influence between electronic structures and crystal packing.

Methods. Electronic structures of the two polymorphs and the single molecule of indomethacin were

calculated with quantum mechanical methods. Electronic properties based upon conceptual density

functional theory were thereby analyzed. A potential energy surface was generated with regard to the

conformational flexibility, which was identified by the electronic analysis. Lattice energies of the two

polymorphs were further calculated with an empirically augmented DFT method.

Results. Electronic properties, including electronic and nuclear Fukui functions, provided a fundamental

understanding of the energetic competition in the indomethacin molecule between delocalization of

p-orbitals of two aromatic rings and steric repulsions. Two dihedral angles (the t1 and t2 in Fig. 1) were

found playing a crucial role in affecting such competition and determining the variation of molecular

conformations. The existing polymorphs, a- and g-forms, were located in local minima on the energy

surface based on the two dihedral angles of their molecular conformations. Calculated lattice energies

suggest the a-form is more stable than the g-form at the zero K.

Conclusions. The polymorphism of indomethacin lies in various meta-stable conformations of the

molecule that are results of different orientations between the two aromatic indole and phenyl rings. The

analysis of electronic and nuclear Fukui functions permits the revelation of local energy barriers that

determine the conformational diversity and, for the case of indomethacin, the conformational

polymorphism.

KEY WORDS: crystal packing; density functional theory; electronic calculation; Fukui function;
indomethacin; polymorphism; quantum mechanics.

INTRODUCTION

Indomethacin (Fig. 1) is known to form polymorphs (1);
two of them, the a- and g- forms, have been structurally
solved (2–5). It can also form solvates (6), and its amorphous
properties have been extensively studied (7). Formation of
different polymorphs and solvates is well known to be caused
by varying experimental conditions including growth media,
solute concentrations and environmental temperature. How-
ever, understanding the origin of indomethacin_s polymor-
phism is scarcely discussed. Current polymorph prediction
efforts rely on a brute-force approach (trying) to sort out all
possible packing motifs of molecules in energy space so as to
identify low-energy forms (8–10), unable to take into account
the role of growth conditions. Lacking of reliable energies

models for evaluating molecular interactions and also due to
a monstrous number of combinations of crystal packing,
limited success has been achieved (11).

In our earlier report (12), we have shown that the
difference in the chemical reactivity of indomethacin with
ammonia between the a- and g- forms lies in the electronic
structures of molecules in the two crystal forms, particularly
the electronic properties including nuclear Fukui functions
that are derived based upon conceptual density functional
theory (13,14). In addition, we have found that conforma-
tional variance of the molecules was decided by the
dislodgement between the two aromatic rings (indole and
phenyl) because of steric hindrance. Calculations of electron-
ic structures and nuclear Fukui functions were able to
identify the local tensions in the molecules with regard to
the energetic competition between the maximization of
aromatic structures and nuclear–nuclear repulsions. The two
dihedral angles, t1 and t2 (Fig. 1), were shown determining
different degrees of the local tensions because of this
competition. There appears to be a connection between the
nuclear Fukui function and conformations of indomethacin
molecules in the crystals. Herein, we report further studies of
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electronic calculations of indomethacin crystals and mole-
cules. In addition to the nucleophilic nuclear Fukui functions
that were reported (12), electrophilic nuclear Fukui functions
were calculated. Moreover, electronic Fukui functions were
calculated and analyzed to uncover the conformational
diversity and polymorphism of the crystal. Energies of single
molecules were analyzed with regard to the two dihedral
angles. Lattice energies of the two polymorphs were calcu-
lated as well. The results suggest that the polymorphism of
indomethacin stems from several metastable energy states
that are associated with various combinations of the two
dihedral angles.

METHODS

Electronic structures of the a- and g-forms of indometh-
acin were calculated with periodic Hartree–Fock (HF) and
density function theory (DFT) methods by solving Bloch
functions that are of the periodicity of crystal lattice and have
their local functions assembled by linear combinations of
Gaussian-type basis sets (15). The a-form [P21, a=5.462,
b=25.310, c=18.152 Å, and b=94.38- (2)] and g-form [P1 ,
a=9.310, b=10.810, c=11.000 Å, a=105.77, b=93.00, and
g=122.48- (4)] were optimized with the restricted HF/6-21G
prior to the final calculations with B3LYP/6-21G. The
structural optimizations were carried out with the lattice
parameters held constant while allowing fractional coordi-
nates of all atoms to adjust. A periodic ab initio program,
Crystal 03 (15), was used for the optimizations and electronic
calculations. Energy convergence for the calculations was set
as 10j7 Hartree. Root-mean-squares (RMS) of the energy
gradient and atomic displacement were set to 0.0001 and
0.0003 atomic units, respectively. All calculations were

performed on a Linux cluster in which parallel versions of
Crystal 03 and Gaussian 03 were deployed.

From the calculated electronic structures of the two
crystal forms, nuclear Fukui functions were evaluated in the
same way as reported earlier (12,16). In brief, the number of
electrons in a unit cell was increased or decreased by one,
and electronic structures of the crystal were re-evaluated.
The finite differences in Hellmann–Feynman forces, Fi, were
calculated as the nuclear Fukui functions (17):

Fþi ¼ Fþi � F0
i

F�i ¼ F0
i � F�i

ð1Þ

where Fþi and F�i are nucleophilic and electrophilic nuclear
Fukui functions, respectively, with the superscript indicating
the increase (+), decrease (j) or no change (0) in the number
of electrons in the unit cell; the subscript, i, indicates the i-th
nucleus. In the calculations of indomethacin, one electron
was added to or removed from one unit cell of the a-form
that had six molecules, and one 3�1 super-cell of the g-form
that also had six molecules, respectively.

From the Hellmann–Feynman theorem (18,19), Fi, origi-
nates from the electronic structure (i.e., electron density) of
the molecular system in addition to nuclear–nuclear repulsions.
The electrostatic forces, {Fi}, provide a straightforward and
pictorial model for understanding molecular conformation and
chemical process based upon the underlying electronic struc-
ture (20,21). Defined as the response of Hellmann–Feynman
force to electronic perturbation as indicated by Eq. 1, the
nuclear Fukui function has been shown to measure how much
a conformational change or displacement of each atom
contributes to the variance in electronic chemical potential of
a molecular system (22). The physical meaning is further
underlined by Fi as a Bcondensed^ index of electronic Fukui
function, f(r), integrated around nucleus i in accordance to the
definitions of the Hellmann–Feynman force and nuclear Fukui
function:

Fi ¼
@Fi

@N

� �
v

¼ Zi

Z
f rð Þ Ri � r

Ri � rj j3
dr ð2Þ

where N is the number of electrons, v(r) is the external
potential determined by nuclear charges {Zi} and their
positions {Ri} at position r in space. It is thus suggested that a
nucleus surrounded by a large density distribution of electronic
Fukui functions tends to have a large value of its nuclear Fukui
function. The connection between nuclear and electronic Fukui
functions is signified by the physical meaning of electronic
Fukui function, which is defined as the change in charge density,
r(r), upon a change in the electronic population (23–25):

f rð Þ ¼ @� rð Þ
@N

� �
v

ð3Þ

Similar to the finite-difference calculations of nuclear
Fukui functions by Eq. 1, nucleophilic and electrophilic
electronic Fukui functions, f +(r) and f j(r), can be
calculated from the difference in charge densities between
the neutral and anionic or cationic molecular systems. It has

Fig. 1. Indomethacin molecule with atoms indexed. Two dihedral

angles are marked by t1 (C1-N1-C9-O1) and t2 (O1-C9-C10-C15).
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been indicated that f(r) is directly associated with local
polarizability or softness of a molecular system (26–28). One
relationship is given by (29):

� ¼ S

Z
rrf rð Þdr ð4Þ

where a and S are the global polarizability and softness,
respectively. The softness, a DFT concept, can be dated back
to Pearson_s HSAB (hard and soft acids and bases) principle
(30–34), and may be utilized to characterize intermolecular
interactions (35,36). In addition, S f(r) is defined as local
softness (37). Thus, we believe a local region of a molecular
system that has strong electronic Fukui functions can
contribute greatly to the intramolecular and intermolecular
interactions, because the van der Waals energy, a dominant
component of the lattice energy of organic crystals, is
determined by polarizabilities of interacting atoms and
molecules (in addition to their distances) (38). It is worth
noting that electrostatic interactions also control how
molecules interact (36,39), but may not be as important as
van der Waals energies in this system. For the purpose of
this study, we further postulate that a large distribution of
local electronic Fukui functions controls the conformational
diversity or flexibility of the molecule, since the transformation
from one stable conformer to another needs to overcome the
energy barrier defined by the molecular region that has a
large distribution of electronic Fukui functions. Given the
relationship between the nuclear and electronic Fukui
functions (Eq. 2), examining nuclear Fukui functions may
allow us to identify those molecular moieties that are pivotal
for the conformational multiplicity. With regard to the
polymorphism of indomethacin, therefore, the analysis of
Fukui functions is believed to reveal the functional groups
that regulate the conformational diversity, and consequently
determine the variation of crystal packing. To further
elaborate, two dihedral angles, t1 and t2 (Fig. 1), were
identified crucial in determining the conformation of the
indomethacin molecule (12). An energy surface was then
produced by calculating the total energy of the single molecule
as a function of the two dihedral angles. The single molecule
was initially optimized, followed by varying t1 and t2 from
j180 to 180- with the step size of 2.5-, respectively. All other
bond lengths and bond angles were kept constant. The
calculations were conducted with the B3LYP/6-311G** by
Gaussian 03 (Gaussian, Wallingford, CT).

Lattice energies of the a- and g-forms of indomethacin
were calculated with an empirically augmented density
functional theory method that we tested on dozens of organic
crystals (40,41). The method was demonstrated to be
satisfactory in reference to the comparisons with experimen-
tal values. Without reiterating the method, only the extension
of considering the chloride atom in calculating the empirical
part of lattice energy is given here. The original method was
able to handle only C, N, O and H atoms. The atomic
dispersion coefficient and effective number of electrons of Cl
were taken from the Halgren_s report as 1,427 kcal/molIÅ3

and 5.1, respectively (42). The van der Waals radius of Cl was
assigned to 1.75 Å according to the literature (43). The
optimized crystal structures of the two polymorphs of
indomethacin were used for both empirical and DFT
calculations of the lattice energy.

RESULTS AND DISCUSSION

Nucleophilic and electrophilic nuclear Fukui functions,
Fþi and F�i , of the three symmetrically different molecules
of the a-form and the one molecule of the g-form of
indomethacin were calculated. Their magnitudes are listed
in Table I. The most notable trend in the nuclear Fukui
function, Fþi

�� �� , is the high stress on C9 and O1 of the
carbonyl group and its surrounding atoms (N1 and C10) as
we reported earlier (12). It should be noted that nuclear
Fukui function values are not normalized (to keep the
average electronic perturbation one molecule per electron
as they were in the last report). As illustrated in Fig. 1, the
carbonyl group bridges the two aromatic systems, the indole
and phenyl rings. Ideally all the p-orbitals from the carbonyl
and two aromatic rings would delocalize and form one single
aromatic plane to lower the system energy. Due to the steric
repulsion between two hydrogen atoms on the phenyl ring
(H5 and H8) and the H4 atom and methyl group (C16 and
H9–H11) on the indole ring, however, the indomethacin
molecule is forced to twist at the carbonyl offsetting the two
aromatic rings. Clearly, the dislodgement of the two aromatic
rings is vividly illustrated by the nucleophilic nuclear Fukui
functions.

Large values of F�i
�� �� can be seen associated with part of

the indole ring (N1, C3–C6 and C8) and the C9 and O2
atoms. Although rankings of F�i

�� �� on these atoms vary, it
appears that N1 has the largest values in the three
molecules of the a-form, and has the third largest value in
the g-form. F�i

�� �� on C9 are also significant, being the second,
the sixth and the fifth in the a-form and the fifth in the g-
form. Interestingly, among the three molecules in the a-form,
the F�i

�� �� values in #3 molecule are considerably larger than
those in other two molecules. Once again, the rankings of the
electrophilic nuclear Fukui functions indicate the twisting of
the two aromatic rings where the linkage atoms experience
large physical stress, highlighting the molecular propensity to
be in a planar conformation. As indicated earlier (12), the
difference in the rankings of Fþi

�� �� and F�i
�� �� is likely led by

the separation of the frontier orbitals between the indole and
phenyl rings.

The different values of the nuclear Fukui functions, as
they were calculated in the two crystal forms, suggest that
the energetic competition between the delocalization of the
p-orbital surrounding the indole, phenyl and carbonyl groups
and the steric repulsion is affected by the conformational
difference of the molecules in the crystals. Table II lists the
two dihedral angles, t1 and t2, that control the relative
orientation between the indole and phenyl rings. Both
experimental and optimized molecular structures in the
a- and g-forms were examined. The small changes (less than
10-) by the structural optimization may indicate the validity
of the optimization approach (40). Values of the optimized
single molecule are also listed. The data show that indo-
methacin exhibits conformational diversity in the two crystal
forms. There are even three different conformations in the
a-form as compared to just one in the g-form. Consequently,
an energy surface was generated with the plot of total energy
of single indomethacin molecules as a function of t1 and t2.

Fig. 2 shows the energy surface. There are eight valleys
of energy minima marked with M1–M4 and M1¶–M4¶ with
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M1 being the lowest. Because of the twofold rotational
symmetry by the phenyl ring along the C10–C9 axis, the
energy minima M1–M4 should be identical with the M1¶–M4¶,
correspondingly. For each identical pair (e.g., M1 vs M1¶),
their t2 have a difference of 180- and t1 are the same. The
slight difference in the total energy on the surface between
each identical pair was due to other bond lengths and bond
angles being fixed when t2 was varied. Particularly the phenyl
ring was not perfectly planar, resulting in two theoretically
identical conformers (t2 and t2+180-) slightly different in
their conformations (and energies) with respect to the phenyl
moiety. Additionally, there are two energy maximum peaks.
The smaller one is due to the close contact between H4 and
H5/H8; the larger one is between the methyl group (C16 and

H9–H11) and H5/H8. Locations of the two dihedral angles
that are associated with the molecules (both experimental
and optimized) in the a- and g-forms are noted on the energy
surface. It appears on Fig. 2 that the conformations of the
molecules in the crystals coincide with the energy minima
that are identified by the energy space spanned by t1 and t2

of single molecules. The g-form has its molecules residing in
M1, close to the global minimum calculated on the single
molecule. One of the three molecules, #2, of the a-form is
also in M1; another two are in the vicinity of other minima
(#1 close to M4 and #3 close to M2¶). It is worth pointing out
that energy surface shown in Fig. 2 is an approximation of
the energy space spanned by the two dihedral angles because
the whole molecule is Bfrozen^ during the generation of the

Table I. Magnitudes of Nuclear Fukui Functions of Three Conformationally Different Molecules in the a-form and One Molecule of the g-form

a-Form g-Form

#1 #2 #3

Fþi F�i Fþi F�i Fþi F�i Fþi F�i

Cl1 0.156 0.056 0.118 0.018 0.056 0.091 0.093 0.008

O1 1.144 0.148 0.851 0.106 0.343 0.318 0.836 0.129

O2 0.142 0.248 0.084 0.441 0.045 1.117 0.031 0.478

O3 0.081 0.099 0.076 0.034 0.114 0.194 0.032 0.039

O4 0.099 0.117 0.062 0.054 0.321 0.258 0.033 0.071

N1 0.611 0.306 0.363 0.436 0.154 1.119 0.343 0.511

C1 0.427 0.066 0.316 0.208 0.106 0.472 0.278 0.123

C2 0.352 0.042 0.286 0.087 0.105 0.253 0.215 0.153

C3 0.285 0.180 0.234 0.300 0.090 0.555 0.180 0.205

C4 0.132 0.158 0.102 0.355 0.039 0.996 0.056 0.562

C5 0.152 0.259 0.098 0.387 0.041 1.104 0.064 0.633

C6 0.078 0.232 0.039 0.274 0.022 0.471 0.032 0.132

C7 0.105 0.187 0.039 0.296 0.018 0.617 0.018 0.202

C8 0.328 0.234 0.182 0.406 0.090 0.839 0.231 0.294

C9 1.227 0.290 1.012 0.318 0.460 0.974 0.991 0.459

C10 0.785 0.021 0.705 0.040 0.330 0.114 0.740 0.060

C11 0.373 0.024 0.377 0.026 0.141 0.066 0.328 0.028

C12 0.246 0.024 0.069 0.020 0.142 0.032 0.182 0.025

C13 0.118 0.077 0.211 0.027 0.086 0.111 0.097 0.029

C14 0.129 0.026 0.318 0.017 0.030 0.055 0.197 0.011

C15 0.394 0.014 0.322 0.016 0.186 0.051 0.342 0.038

C16 0.058 0.021 0.019 0.033 0.016 0.034 0.019 0.013

C17 0.064 0.074 0.040 0.007 0.032 0.051 0.021 0.188

C18 0.120 0.136 0.131 0.051 0.293 0.318 0.034 0.044

C19 0.038 0.150 0.032 0.201 0.030 0.454 0.062 0.122

H1 0.010 0.089 0.019 0.063 0.269 0.035 0.027 0.011

H2 0.026 0.094 0.011 0.013 0.008 0.076 0.009 0.027

H3 0.014 0.013 0.008 0.008 0.011 0.013 0.007 0.006

H4 0.030 0.012 0.029 0.018 0.013 0.031 0.022 0.016

H5 0.045 0.013 0.036 0.012 0.024 0.057 0.034 0.008

H6 0.029 0.032 0.049 0.018 0.034 0.011 0.010 0.001

H7 0.036 0.031 0.021 0.009 0.013 0.008 0.032 0.039

H8 0.030 0.010 0.025 0.009 0.016 0.036 0.008 0.022

H9 0.012 0.011 0.037 0.019 0.008 0.028 0.043 0.008

H10 0.030 0.015 0.018 0.023 0.015 0.033 0.008 0.011

H11 0.045 0.008 0.020 0.009 0.015 0.034 0.011 0.014

H12 0.022 0.145 0.011 0.003 0.020 0.019 0.015 0.016

H13 0.011 0.035 0.008 0.004 0.005 0.031 0.002 0.021

H14 0.009 0.030 0.014 0.018 0.005 0.059 0.028 0.028

H15 0.006 0.011 0.014 0.016 0.007 0.030 0.011 0.012

H16 0.007 0.028 0.016 0.038 0.004 0.060 0.004 0.041

Unit: nN
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energy surface except for t1 and t2. Only the starting
structure (marked by a cross in Fig. 2) was fully optimized
serving as the global minimum. In addition, the energy
surface is of single molecule calculated in gas phase, not in
the crystals. As such, M1 is more reliable while other local
minimum regions may be shifted if full optimizations are
conducted for all points in Fig. 2. Nonetheless, the calcu-
lations were not meant to produce an accurate energy
surface, but rather to reveal the local minima and their
relative positions; the most interesting result is the residency
of the molecules of the a- and g-forms in or close to the
energy minimum regions, indicating that the polymorphism
of indomethacin stems from the conformational variance of
the molecule itself. Furthermore, there is another local
minimum region, M3, that may offer potential candidates of
molecular structures for new polymorphs of indomethacin.
The three molecular structures in each asymmetric unit of
the a-form come from three of the four local minimum
regions (M1, M2 and M4), suggesting that there could be

more new polymorphs. The energy surface produced by
varying just two dihedral angles, t1 and t2, seems to reveal
the conformational polymorphism of indomethacin.

The analyses of both nuclear Fukui functions (Table I)
and the energy surface (Fig. 2) point to the same chemical
moiety, manifested by t1 and t2, that determines the
conformational diversity and, most likely, leads to the
polymorphism of indomethacin. The large values of nuclear
Fukui functions in the two polymorphs, as suggested by Eqs.
2–4, indicate large distributions of nucleophilic electronic
Fukui functions around the carbonyl group (C9 and O1) and
electrophilic electronic Fukui functions around the N1 atom
and the phenyl part of the indole ring, respectively. This is
clearly illustrated by Fig. 3 in which Fi and isosurfaces of f(r)
are plotted concurrently. For the reason that a large region of
electronic Fukui functions suggests the surrounded chemical
moiety is softer or more polarizable, such a region is believed
to contribute considerably to the interatomic interactions of
organic molecules and, within the context of this study, to the
relative stabilities of indomethacin_s conformations. Since
different conformers of the same molecule are local minima
with regard to the molecular energy, when one conformer
transforms to another, an energy barrier must be overcome.
If a local conformational minimum is bounded by large energy
barriers, the conformation is likely to be a major conformer
and the molecule should be relatively stable when taking the

Fig. 3. Isosurfaces of electronic Fukui functions of a molecule in the

a-form (red nucleophilic, blue electrophilic). The value of the

isosurfaces is 0.001 e/bohr3. Nucleophilic and electrophilic nuclear

Fukui functions are also illustrated by arrows whose lengths are

proportional to their magnitudes.

Fig. 2. Energy surface of single indomethacin molecule as a function

of t1 and t2 with corresponding values of molecules in the a- and g-

forms marked. Experimental structures are shown as dark diamonds,

and optimized structures are as pink squares. The global minimum

(i.e., the fully optimized single molecule) is shown as an x. Four local

minima are indicated by M1–M4. The color scheme (inserted color

bar) changes linearly from blue to green to red, indicating the

increase in the total energy from j1549.83 to j1549.73 hartrees.

Table II. Dihedral Angles, t1 and t2, of the a- and g-forms of Both Experimental (Exp) and Optimized (Opt) Structures as well as of the

Optimized Single Molecule

a-Form g-Form
Molecule

#1 #2 #3

Exp Opt Exp Opt Exp Opt Exp Opt

t1 j159.74 j158.58 j23.23 j24.48 21.39 29.49 j26.17 j32.42 j29.84

t2 52.92 51.80 j51.88 j41.51 50.00 43.32 j40.32 j23.25 j29.55

Unit: degree
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conformation. Therefore, the concurrence between the con-
formational flexibility around the carbonyl group (C9 and O1)
and the large distribution of electronic Fukui functions (along
with the large values of corresponding nuclear Fukui func-
tions) suggests that the most important conformers of indo-
methacin are decided by the carbonyl and its surrounding
moiety through the two dihedral angles t1 and t2.

The lattice energies of the two polymorphs, furthermore,
were calculated with the empirically augmented DFT meth-
ods (40,41). With the medium damping function, the lattice
energies of the a- and g-forms are j113.90 andj101.25 kJ/mol,
respectively, indicating the a-form is considerably more stable.
Empirically calculated dispersion energies are j168.24 and
j164.24 kJ/mol of the a- and g-forms, respectively. The results
indicate that the long-range van der Waals interaction is the
determinant energy term in the crystal packing of indometh-
acin. The results also imply that the crystal system is enantio-
tropic because the g-form is more stable than the a-form at
room temperature (44), and the calculations were implicitly
done at absolute zero. Although the conformation of single
molecule in the g-form is the most stable as compared to
those in the a-form (Fig. 2), the lattice energy values seem to
indicate the intermolecular interactions in the a-form are
stronger, perhaps due to larger polarizabilities and/or more
close contacts. Still, further studies are needed for under-
standing the relative stability since the a-form has lower
melting point and lower heat of fusion but higher density
than the g-form.

In summary, we have calculated the electronic structures
and lattice energies of the two polymorphs of indomethacin.
Analysis of electronic properties, including electronic and
nuclear Fukui functions, shows the conformational polymor-
phism of indomethacin is due to the energetic competition
between delocalization of p systems and steric repulsion. The
study further demonstrates the potential of using Fukui
functions for conformational examination. As organic crys-
tals are mainly held by the dispersion energy, this approach
may be extended to understanding the packing polymor-
phism and even more complicated cases.
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